An event-based approach to validating solar wind speed predictions: High-speed enhancements in the Wang-Sheeley-Arge model

نویسندگان

  • M. J. Owens
  • C. N. Arge
چکیده

[1] One of the primary goals of the Center for Integrated Space Weather Modeling (CISM) effort is to assess and improve prediction of the solar wind conditions in nearEarth space, arising from both quasi-steady and transient structures. We compare 8 years of L1 in situ observations to predictions of the solar wind speed made by the WangSheeley-Arge (WSA) empirical model. The mean-square error (MSE) between the observed and model predictions is used to reach a number of useful conclusions: there is no systematic lag in the WSA predictions, the MSE is found to be highest at solar minimum and lowest during the rise to solar maximum, and the optimal lead time for 1 AU solar wind speed predictions is found to be 3 days. However, MSE is shown to frequently be an inadequate ‘‘figure of merit’’ for assessing solar wind speed predictions. A complementary, event-based analysis technique is developed in which high-speed enhancements (HSEs) are systematically selected and associated from observed and model time series. WSA model is validated using comparisons of the number of hit, missed, and false HSEs, along with the timing and speed magnitude errors between the forecasted and observed events. Morphological differences between the different HSE populations are investigated to aid interpretation of the results and improvements to the model. Finally, by defining discrete events in the time series, model predictions from above and below the ecliptic plane can be used to estimate an uncertainty in the predicted HSE arrival times.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of the magnetic field discontinuity at the potential field source surface and Schatten Current Sheet interface in the Wang–Sheeley–Arge model

[1] The Wang–Sheeley–Arge solar wind model makes use of coupled potential field source surface (PFSS) and Schatten Current Sheet (SCS) models to reconstruct the coronal magnetic field on the basis of the observed line-of-sight photospheric magnetic field and a 1D kinematic code to propagate the solar wind to 1 AU. The source surface serves as the outer boundary of the PFSS model and the inner b...

متن کامل

The distribution of solar wind speeds during solar minimum: Calibration for numerical solar wind modeling constraints on the source of the slow solar wind

[1] It took the solar polar passage of Ulysses in the early 1990s to establish the global structure of the solar wind speed during solar minimum. However, it remains unclear if the solar wind is composed of two distinct populations of solar wind from different sources (e.g., closed loops which open up to produce the slow solar wind) or if the fast and slow solar wind rely on the superradial exp...

متن کامل

Using the WSA Model to Test the Parker Spiral Approximation for SEP Event Magnetic Connections

In studies of solar energetic (E > 10 MeV) particle (SEP) events the Parker spiral (PS) field approximation, based only on the measured 1 AU solar wind (SW) speed Vsw, is nearly always used to determine the coronal or photospheric source locations of the 1 AU magnetic fields. There is no objective way to validate that approximation, but here we seek guidelines for optimizing its application. We...

متن کامل

Development of Coronal Field and Solar Wind Components for MHD Interplanetary Simulations

The connection between solar activity and adverse phenomena in the Earth’s environment that can affect space and ground based technologies has spurred interest in Space Weather (SW) research. A great effort has been put on the development of suitable models that can provide advanced forecast of SW events. With the progress in computational technology, it is becoming possible to develop operatio...

متن کامل

Solar Wind Forecasting with Coronal Holes

An empirical model for forecasting solar wind speed related geomagnetic events is presented here. The model is based on the estimated location and size of solar coronal holes. This method differs from models that are based on photospheric magnetograms (e.g., Wang-Sheeley model) to estimate the open field line configuration. Rather than requiring the use of a full magnetic synoptic map, the meth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005